mesons to charmed baryons

  • Published on

  • View

  • Download


  • PHYSICAL REVIEW D 1 JUNE 1998VOLUME 57, NUMBER 11Study of semileptonic decays ofB mesons to charmed baryons

    G. Bonvicini,1 D. Cinabro,1 R. Greene,1 L. P. Perera,1 G. J. Zhou,1 M. Chadha,2 S. Chan,2 G. Eigen,2

    J. S. Miller,2 C. OGrady,2 M. Schmidtler,2 J. Urheim,2 A. J. Weinstein,2 F. Wurthwein,2 D. W. Bliss,3 G. Masek,3

    H. P. Paar,3 S. Prell,3 V. Sharma,3 D. M. Asner,4 J. Gronberg,4 T. S. Hill,4 D. J. Lange,4 R. J. Morrison,4

    H. N. Nelson,4 T. K. Nelson,4 D. Roberts,4 A. Ryd,4 R. Balest,5 B. H. Behrens,5 W. T. Ford,5 H. Park,5 J. Roy,5

    J. G. Smith,5 J. P. Alexander,6 R. Baker,6 C. Bebek,6 B. E. Berger,6 K. Berkelman,6 K. Bloom,6 V. Boisvert,6

    D. G. Cassel,6 D. S. Crowcroft,6 M. Dickson,6 S. von Dombrowski,6 P. S. Drell,6 K. M. Ecklund,6 R. Ehrlich,6

    A. D. Foland,6 P. Gaidarev,6 L. Gibbons,6 B. Gittelman,6 S. W. Gray,6 D. L. Hartill,6 B. K. Heltsley,6 P. I. Hopman,6

    J. Kandaswamy,6 P. C. Kim,6 D. L. Kreinick,6 T. Lee,6 Y. Liu,6 N. B. Mistry,6 C. R. Ng,6 E. Nordberg,6

    M. Ogg,6,* J. R. Patterson,6 D. Peterson,6 D. Riley,6 A. Soffer,6 B. Valant-Spaight,6 C. Ward,6 M. Athanas,7

    P. Avery,7 C. D. Jones,7 M. Lohner,7 S. Patton,7 C. Prescott,7 J. Yelton,7 J. Zheng,7 G. Brandenburg,8 R. A. Briere,8

    A. Ershov,8 Y. S. Gao,8 D. Y.-J. Kim,8 R. Wilson,8 H. Yamamoto,8 T. E. Browder,9 Y. Li, 9 J. L. Rodriguez,9

    T. Bergfeld,10 B. I. Eisenstein,10 J. Ernst,10 G. E. Gladding,10 G. D. Gollin,10 R. M. Hans,10 E. Johnson,10 I. Karliner,10

    M. A. Marsh,10 M. Palmer,10 M. Selen,10 J. J. Thaler,10 K. W. Edwards,11 A. Bellerive,12 R. Janicek,12

    D. B. MacFarlane,12 P. M. Patel,12 A. J. Sadoff,13 R. Ammar,14 P. Baringer,14 A. Bean,14 D. Besson,14 D. Coppage,14

    C. Darling,14 R. Davis,14 S. Kotov,14 I. Kravchenko,14 N. Kwak,14 L. Zhou,14 S. Anderson,15 Y. Kubota,15

    S. J. Lee,15 J. J. ONeill,15 R. Poling,15 T. Riehle,15 A. Smith,15 M. S. Alam,16 S. B. Athar,16 Z. Ling,16

    A. H. Mahmood,16 S. Timm,16 F. Wappler,16 A. Anastassov,17 J. E. Duboscq,17 D. Fujino,17, K. K. Gan,17 T. Hart,17

    K. Honscheid,17 H. Kagan,17 R. Kass,17 J. Lee,17 M. B. Spencer,17 M. Sung,17 A. Undrus,17, R. Wanke,17

    A. Wolf,17 M. M. Zoeller,17 B. Nemati,18 S. J. Richichi,18 W. R. Ross,18 H. Severini,18 P. Skubic,18 M. Bishai,19

    J. Fast,19 J. W. Hinson,19 N. Menon,19 D. H. Miller,19 E. I. Shibata,19 I. P. J. Shipsey,19 M. Yurko,19 S. Glenn,20

    S. D. Johnson,20 Y. Kwon,20, S. Roberts,20 E. H. Thorndike,20 C. P. Jessop,21 K. Lingel,21 H. Marsiske,21

    M. L. Perl,21 V. Savinov,21 D. Ugolini,21 R. Wang,21 X. Zhou,21 T. E. Coan,22 V. Fadeyev,22 I. Korolkov,22

    Y. Maravin,22 I. Narsky,22 V. Shelkov,22 J. Staeck,22 R. Stroynowski,22 I. Volobouev,22 J. Ye,22 M. Artuso,23 F. Azfar,23

    A. Efimov,23 M. Goldberg,23 D. He,23 S. Kopp,23 G. C. Moneti,23 R. Mountain,23 S. Schuh,23 T. Skwarnicki,23

    S. Stone,23 G. Viehhauser,23 X. Xing,23 J. Bartelt,24 S. E. Csorna,24 V. Jain,24,i K. W. McLean,24 S. Marka,24

    R. Godang,25 K. Kinoshita,25 I. C. Lai,25 P. Pomianowski,25 and S. Schrenk25

    ~CLEO Collaboration!1Wayne State University, Detroit, Michigan 48202

    2California Institute of Technology, Pasadena, California 911253University of California, San Diego, La Jolla, California 92093

    4University of California, Santa Barbara, California 931065University of Colorado, Boulder, Colorado 80309-0390

    6Cornell University, Ithaca, New York 148537University of Florida, Gainesville, Florida 32611

    8Harvard University, Cambridge, Massachusetts 021389University of Hawaii at Manoa, Honolulu, Hawaii 9682210University of Illinois, Urbana-Champaign, Illinois 6180111Carleton University, Ottawa, Ontario, Canada K1S 5B6

    and the Institute of Particle Physics, Canada12McGill University, Montreal, Quebec, Canada H3A 2T8

    and the Institute of Particle Physics, Canada13Ithaca College, Ithaca, New York 14850

    14University of Kansas, Lawrence, Kansas 6604515University of Minnesota, Minneapolis, Minnesota 55455

    16State University of New York at Albany, Albany, New York 1222217Ohio State University, Columbus, Ohio 43210

    18University of Oklahoma, Norman, Oklahoma 7301919Purdue University, West Lafayette, Indiana 47907

    20University of Rochester, Rochester, New York 1462721Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

    22Southern Methodist University, Dallas, Texas 7527523Syracuse University, Syracuse, New York 13244

    24Vanderbilt University, Nashville, Tennessee 3723525Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

    ~Received 2 December 1997; published 14 April 1998!570556-2821/98/57~11!/6604~5!/$15.00 6604 1998 The American Physical Society

  • 57 6605STUDY OF SEMILEPTONIC DECAYS OFB MESONS TO . . .Using data collected by the CLEO II detector at a center-of-mass energy on or near theY(4S) resonance,

    we have determined the 90% confidence level upper limitB(BLc1e2X)/BB(Lc1 or Lc2)X,0.05 forelectrons with momentum above 0.6 GeV/c. We have also obtained the limitB(B2Lc1pe2ne)/B(BLc1pX),0.04 at the 90% confidence level and measured the ratioB(BLc1pX)/BB(Lc1 or Lc2)X50.5760.0560.05. @S0556-2821~98!03111-7#

    PACS number~s!: 13.20.Heo















    t of


    t 4re-


    d to

    d to.icto





    In the naive spectator model, mostB mesons decaythrough the spectator diagram with semileptonic decays

    curring by external W-emission:bcW; Wl n l . Inthis picture, charmed baryon production occurs when tquark-antiquark pairs from the vacuum bind with the chaquark and the spectator antiquark to form aLc

    1(cud) plus an

    antinucleonN. In this paper we attempt to isolate the manitude of this externalW-emission spectator diagram icharmed baryon decays by measuringBLc1e2X andB2Lc1pe2ne . For normalization modes, we also measuBLc1pX and B(Lc1 or Lc2)X. Throughout this papecharged conjugate modes are implicit.

    If Bbaryons does indeed occur through exterW-emission as outlined above, then the decBLc1NXe2n l will occur @1#. We can estimate the magntude of R5B(BLc1Ne2n l )/B(BLc1NX) by using thenaive expectation for the semileptonic branching ratiothese decays. The (cs) and (tnt) contributions are absendue to the limited available phase space, and so a maximof 20% is expected for the ratioR. Alternately, one mightanticipate thatB(BLc1Xe2ne)/B(BLc1X) is compa-rable to the measurements ofB(BDXe2ne)/B(BDX).12% @2#.

    There are two other baryon production mechanisms inBdecay, neither making a contribution to semileptonic decIn one, theW is emitted internally and decays to (cs), lead-ing to JcLc final states. This mechanism was studied inprevious CLEO paper, which looked at the charge corretions between Lcs and leptons from B decay andfound RLc5NLc

    2l 1 /NLc1l 15B(BLc2X)B(BXl 1n l )/

    B(BLc1X)B(BXl 1n l )50.1960.1360.04 which isdirectly related toB(bccs)/B(bcud) @3#. For LcX fi-nal states, we cannot rule out the possibility in our analythat we are observing decays of the typeBJcLc , as wecannot tag the parentB meson in theBLc1X analysis.Therefore, the yields for this mode will be quoted as decof the typeB(Lc1 or Lc2)X. Another mechanism is the

    *Permanent address: University of Texas, Austin TX 78712.Permanent address: Lawrence Livermore National Laborat

    Livermore, CA 94551.Permanent address: BINP, RU-630090 Novosibirsk, Russia.Permanent address: Yonsei University, Seoul 120-749, KoreiPermanent address: Brookhaven National Laboratory, Up

    NY 11973.c-









    internal emission of aW followed by its decay to (ud).Measurements ofB mesons decaying hadronically tcharmed baryons indicate that this internalW-emission dia-gram may contribute significantly@4#. A substantial contri-bution from this diagram would reduce the semileptonic dcay width.

    The semileptonic branching ratio ofB mesons is knownto have a lower value than theoretical predictions@5#. Thesepredictions assume a large externalW-emission contributionin baryon decays. The suggestion has been made that thmay underestimate theB-hadronic width by neglectingBdecay channels to baryon states@6#. If this is the case, hadronic decays to charmed baryons could explain the lowclusive semileptonic branching ratio. The measuremensemileptonic decays ofB mesons toLc will provide vitalinformation on baryon production inB decays.

    A. Data sample and event selection

    The data were taken with the CLEO II detector@7# at theCornell Electron Storage Ring~CESR!, and consist of3.2 fb21 on theY(4S) resonance and 1.6 fb21 at a center-of-mass energy 60 MeV below the resonance. The on-resonsample contains 3.43106 BB events and 103106 continuumevents. We select hadronic events containing at leascharged tracks. To suppress continuum background, wequire the ratio of Fox-Wolfram moments@8# R25H2 /H0 tosatisfy R2

  • gluo
















    6606 57G. BONVICINI et al.rived from the Monte Carlo simulation. After subtractinnon-BB contributions using off-resonance data scaled forminosity and cross section, we obtain a total sample48796296B(Lc1 or Lc2)X events from data. After scaling by the efficiency, we find a yield of 1355268226802events, where the second~systematic! error includes contri-butions from the efficiency correction.

    B. Study of BLc1e2X

    Because of the soft lepton momentum spectrum fromdecay and the limited reconstruction efficiency for low mmentum muons, we use only electrons in our analysis. Etron identification relies onE/p measurements derived fromthe calorimeter and drift chamber, as well as specific ionition loss measurements from the drift chamber. The requment of ln(Pe/Pe).3.0 is imposed, wherePe(Pe) is the

    FIG. 1. The fit ~line! to the pK2p1 invariant mass spectrumfrom on resonance data events~points with error bars! and the

    scaled off resonance data~histogram! for the ~a! BLc1e2X and~b! B2Lc1pe2ne analyses.-f



    probability that a given charged track is an electron~not anelectron!. We choose a minimum momentum cutoff o0.6 GeV/c for these electrons to limit fake and secondaelectron background sources. The maximum possible etron momentum for this decay is 1.5 GeV/c. Electron candi-dates are restricted to the polar angular regionucosuu

  • th

























    57 6607STUDY OF SEMILEPTONIC DECAYS OFB MESONS TO . . .B2Lc1pe2ne , where the electron is prompt from theBdecay, is found to be 17%. Monte Carlo events from

    chain B0Lc1D0e2ne , D0 pp1 were also generated tmeasure the efficiency. This mode adds one extra pion tototal decay chain although more could be present in o

    decays such asBScDen. Differences between efficienciefor B2 andB0 are found to be negligible. After all other cutwe find that 73% of the events fromB2Lc1pe2ne passour electron momentum cut while only 45% of the evefrom B0Lc1D0e2ne pass. Because the total efficiencydependent on the number of pions in the final state,choose to quote a partial branching fraction where the lepmomentum is greater than 0.6 GeV/c. In this electron mo-mentum range, the efficiency forBLc1pe2ne is0.23960.005 which is consistent with the efficiency foother modes with extra pions. In addition to assigning a stematic error due to efficiency determination, we addquadrature errors from the fake lepton and uncorrelabackground source estimates to obtain the total systemerror.

    C. Search for B2Lc1pe2ne

    The signature ofB2Lc1pe2ne is a baryon-lepton-antiproton combination which has a recoil mass consiswith that of a neutrino, approximating theB momentum aszero. CandidateLc

    1s, electrons, and antiprotons for thanalysis must satisfy requirements similar to those discusabove. We then require that the approximation of the squamass of the neutrino, M n


    1pe)2, be greater than22(GeV/c2)2. In addition, we place

    an angular cut of cosuLc-e,20.2, whereuLc-e is the angle

    between theLc1 and electron. In Fig. 1~b! we show theLc


    invariant mass distribution for combinations passing allthese cuts. This distribution is fit as before; results are giin Table I.

    Backgrounds to this process stem from three sources:antiprotons or electrons, non-BB events, and secondary eletrons or antiprotons. Fake antiprotons and electrons aresidered separately. We use the same methods as descabove to determine each contribution. The continuum baground is measured using the off-resonance data scaleluminosity and cross section. The remaining backgrouevents, in which electrons come from the decay chb c sen, can be estimated using a Monte Carlo simution. The wrong sign data and Monte Carlo results are copared and again found to agree well.

    We find efficiency using theB2Lc1pe2ne MonteCarlo events where theB1 decays generically. The efficiency is found to be 0.09460.003. Systematic errors arassigned for each of the background source estimates anefficiency determination as described above.

    D. Study of BLc1pX

    We pair allLc1 and p candidates using theLc

    1 selection

    as described above. For thep, in addition to the cut on theproton probability of greater than 0.0003, we employ ade













    tional veto cuts on the particle identification of 2s for thep,K, and electron to reduce fake antiprotons. We then fitLc

    1 invariant mass. The observedLc1 signal area then mea

    sures the number ofLc12 p correlations. Figure 2 shows th

    fit to the data.We are looking for decays where theLc

    1 and p haveopposite charge and both are primary from theB decay.Backgrounds are categorized into two sources: secondap~not primary from aB decay! and fakep. The first back-ground source is estimated by usingBLc1X Monte Carloevents as above. Once again we check this procedurecomparing wrong sign data yields to our Monte Carlo wrosign prediction. Proton misidentification probabilities aalso measured directly from the data by using a pion samfrom KS

    0p1p2 where KS0s are selected by a secondavertex finder. After applying the veto cuts for kaons, pionand electrons, the fake probability derived from just usithe pion rate is found to be consistent with the species aaged rate. The background contribution of fakeps is ob-tained by running the same analysis without the partiidentification cuts for thep correlated withLc

    1 . The yieldsobtained from fits to thepK2p1 mass are then multiplied bythe fakingp probabilities and weighted by momentum. Thprocedure will yield an upper limit on the number of fakeas real proton tracks are double counted in our procedWe studied the overcounting rate and assign a systemerror based on the difference between the number of procounted with no identification criteria and the numbcounted using the anti-identification criteria.

    We have also measured the absolute proton identificaefficiency as a function of momentum for the cuts in thanalysis using a sample ofLpp2 events. The differencesin the identification efficiencies between the data and MoCarlo prediction are then used to calculate the system

    FIG. 2. The fit ~line! to the pK2p1 invariant mass spectrumfrom on resonance data event...