Devils Logic PDR presentation

  • Published on
    15-Apr-2017

  • View
    198

  • Download
    0

Transcript

<ul><li><p>1INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>2INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Science </p><p>Question</p><p>Science </p><p>Objective</p><p>Physical </p><p>ParametersObservables</p><p>Surface </p><p>composition of </p><p>Phobos</p><p>Determine </p><p>Mineral / </p><p>Chemical </p><p>composition</p><p>Spectral</p><p>Reflectance </p><p>in IR range</p><p>Spectral Reflecatnce sampling </p><p>at 10 nm bandwidths from </p><p>1000nm to 2400nm</p><p>Historical </p><p>nature of </p><p>Phobos' surface </p><p>structure and </p><p>morphology</p><p>Imaging of </p><p>striation / crater </p><p>intersection </p><p>points</p><p>Structure </p><p>and </p><p>morphology</p><p>High resolution images of </p><p>striation intersection points</p><p>Location of L1 </p><p>Stability </p><p>Observe the </p><p>stability of the L1 </p><p>Lagrange Point.</p><p>Position &amp; </p><p>Velocity of </p><p>CubeSat</p><p> Spacecraft position</p><p> Doppler velocity</p><p> Spacecraft Attitude</p><p>3</p><p>Science Objectives</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>4</p><p>Science Mission Overview</p><p> Achieve orbit around Mars beyond Phobos</p><p> Perform multiple fly-bys of Phobos</p><p> Begin use of primary instrumentso Infrared Spectrometer</p><p>oHigh resolution visible light camera</p><p>oCollect Star Tracker and IMU data </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>5</p><p>Improvements Upon Existing Science Data</p><p> Spectroscopy </p><p> Surface reflectance spectra will improve data previously collected byo Mars Pathfindero Mariner 9 o Viking Lander</p><p> This information will be used too More accurately classify the moons compositiono Improve understanding of the origin of Phobos</p><p> High-Resolution Visible-light Imaging</p><p> Visible light surface images collected by LOGIC will improve upon data collected byo Mars Express HRSC Imager 50 kilometer altitude 5 meters/pixel resolution</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Instrument Challenges</p><p>Spectrometer</p><p> Decreasing movement between spacecraft and camera </p><p>during image capture to avoid motion blur</p><p> Filtering out data which exceeds transmission data </p><p>budget</p><p>Visible-light Camera</p><p> Ensuring that the surface is within the field of vision </p><p>for a variety of orbital altitudes</p><p> Lens must remain undamaged and free of debris</p><p>ADCS</p><p> Must reject erroneous data</p><p> High-accuracy clock for precise signal-delay </p><p>measurements</p><p>6</p><p>Principle Mission Challenges</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>7</p><p>Science Traceability Matrix</p><p>Science </p><p>Question</p><p>Science </p><p>Objective</p><p>Physical </p><p>ParametersObservables Instruments</p><p>Required </p><p>Instrument</p><p>Performance</p><p>Projected</p><p>Instrument</p><p>Performance</p><p>Mission </p><p>Requirements</p><p>Surface </p><p>composition </p><p>of Phobos/ </p><p>Stickney </p><p>crater</p><p>Determine </p><p>Mineral / </p><p>Chemical </p><p>composition</p><p>Surface </p><p>reflectivity</p><p>in IR range</p><p>Spectral</p><p>reflectance </p><p>sampling at </p><p>6 nm </p><p>bandwidths </p><p>from </p><p>1000nm to </p><p>2400nm</p><p>Spectrometer</p></li><li><p>8INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Science Objective Instrument Minimum requirement</p><p>Determine Mineral / </p><p>Chemical </p><p>composition</p><p>Spectrometer</p><p> Spectral range 1000 nm to 2400nm </p><p> 10 nm Spectral band </p><p> 100 channels</p><p> 100m x 100m spatial resolution</p><p>Imaging of striation / </p><p>crater intersection </p><p>points</p><p>Visual </p><p>Spectrum </p><p>Camera</p><p> Minimum Resolution of 1.8 m / pixel</p><p> 1/3rd imaging of surface</p><p>9</p><p>Requirements &amp; Challenges</p><p>Challenges: </p><p> Volume Constraint: under 10%</p><p> Low Albedo: 7.1% (2.31 Lux)</p><p> Low data relay rates: 7.8 kbps</p><p> Spectral range selection :(VIS-NIR-SWIR)</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Spectrometer</p><p>10</p><p>Spectrometer</p><p>Parameter</p><p>Edmond Optics</p><p>1000 2000nm</p><p>InGaAs NIR</p><p>NIR Quest 256-</p><p>2.5Argus 1000</p><p>Mass [g] 650 1180 230</p><p>Volume [cc] 1020.6 940.7 180</p><p>Power [W] 12 15 6.2</p><p>Range [nm] 1000 - 2000 900 - 2500 1000 - 2400</p><p>Spectral Resolution </p><p>[nm]8 9.5 12</p><p>No of bands 128 128 100</p><p>No of pixels 256 Pixel Array 256 Pixel Array 256 Pixel Array</p><p>Integration Time 20 s to 10 s 1-400 ms 0.5s to 4.1s</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>11</p><p>0</p><p>0.5</p><p>1</p><p>1.5</p><p>2</p><p>2.5</p><p>3</p><p>3.5</p><p>4</p><p>4.5</p><p>EDMOND OPTICS NIR QUEST ARGUS 1000</p><p>Edmond Optics NIR Quest Argus 1000</p><p>Power consumption[Whr] 3 3.75 1.55</p><p>Data per exposure[kb] 4.096 4.096 3.328</p><p>Spectrometer Power Consumption &amp; Data Generation </p><p>Power consumption[Whr] Data per exposure[kb]</p><p>Spectrometer</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Visual Spectrum Camera</p><p>12</p><p>Cameras</p><p>ParametersCIRES - E2V Malin ECAM-C50</p><p>Teledyne Dalsa </p><p>Genie</p><p>Mass [g]Sensor system 70 256 196</p><p>Lens system 240 100 460</p><p>Volume [cc]Sensor system 50.92 199.1 129.7</p><p>Lens system 103.5 269.7 367.2</p><p>Power [W] 1.5 2.5 4.5</p><p>Pixel Density [MP] 1.3 5 12</p><p>Fly-bySR [m/pixel] 1.8 1.8 1.8</p><p>Max WD [m] 6912.00 14310.00 22118.40</p><p>Nom CaseSR [m/pixel] 2083.33 1006.29 651.04</p><p>WD [m] 8000.00 8000.00 8000.00</p><p>Best CaseSR [m/pixel] 1302.08 628.93 406.90</p><p>WD [m] 5000.00 5000.00 5000.00</p><p>WD: Working distance SR: Spatial resolution </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>13</p><p>0</p><p>5</p><p>10</p><p>15</p><p>20</p><p>25</p><p>30</p><p>35</p><p>40</p><p>CIRES - E2V MALIN ECAM-C50 TELEDYNE DALSA GENIE</p><p>CIRES - E2V Malin ECAM-C50 Teledyne Dalsa Genie</p><p>Power Consumption[Whr] 0.375 0.625 2.375</p><p>size of single image[MB] 3.75 14.74 36</p><p>Camera Power Generation and Data Generation </p><p>Power Consumption[Whr] size of single image[MB]</p><p>Visual Spectrum Camera</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>14</p><p>Recommendations</p><p>Camera </p><p>description</p><p>Weight</p><p>age</p><p>Spectrometer Visual Spectrum Camera</p><p>Edmond </p><p>OpticsNIR Quest</p><p>Argus </p><p>1000</p><p>CIRES -</p><p>E2V</p><p>Malin </p><p>ECAM-C50</p><p>Teledyne </p><p>Dalsa </p><p>Genie</p><p>Mass 15% 3 1 5 5 4 3</p><p>Volume 15% 1 2 5 5 3 4</p><p>Power &amp; </p><p>Operating </p><p>temperature</p><p>10% 2 1 3 5 4 3</p><p>Spectral </p><p>resolution15% 4 3 1 2 4 5</p><p>Performance 45% 4 4.56 4.33 4.22 3.67 1.78</p><p>Space heritage Aerospace Aerospace Yes Leo Yes No</p><p>Total 100% 64% 61% 78% 84% 74% 58%</p><p>The performance is a function of spectral range , integration time , SNR &amp; QE and image size for spectral and lens </p><p>mass &amp; vol , shutter speed , SNR&amp; QE and image size for the camera </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>15</p><p>ArchitectureSpectrometer</p><p>Visual Spectrum camera</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>16</p><p>Modifications</p><p>1. Improvement of spectral resolution: Larger pixel array </p><p>2. Improvement of spectral range : different diffraction grating</p><p>3. Reduction of the volume : use commercially available lens</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>17INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Single CubeSat Limitations</p><p> Volume constraint : Volume availability for science payload is limited (less than 1U)</p><p> Power constraint : Unable to operate science payloads and communication system simultaneously</p><p> Low data transmission </p><p>o Small antenna and low power</p><p>o Nominal transmission rate (7.8kbps)</p><p>18INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Benefits of CubeSat Network</p><p> Volume o Better quality science instrument</p><p>o Multiple Spectrometers to cover the required spectrum </p><p> Power o Reduction in power requirement </p><p>o Simultaneous subsystem operation capability</p><p> Data transmission rate</p><p>o Extra power for transmitter</p><p>o Larger antennas</p><p>19</p><p>www.nasa.gov</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Maximization of Science Data</p><p> Spectrometer o Cover complete spectrum: UV,VIS, IR &amp; Xray</p><p>o Investigation for more mineral compositions</p><p>o Improved mineral classification capability</p><p> Visual camerao More information and improved interpretation capability </p><p>o Stereo vision-lead to 3D map</p><p>o Enhancement of features</p><p> Stability Data o Inter-CubeSat communication, S band ranging</p><p>o Improved accuracy</p><p>o Analogues to GRAIL and GRACE</p><p>20INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>CubeSat Network Vs Hayabusa I</p><p>Instrument Hayabusa I CubeSat Network </p><p>SpectrometerNIR: range (700-2100 nm)</p><p>XRF:0.7 - IO KeV</p><p>Spectrometer network </p><p>can obtain more spectral </p><p>data (362-3920nm)</p><p>Visual Spectral </p><p>Camera</p><p>Multiband Came</p><p>Resolution -70cm at 7kmResolution -62cm at 5km</p><p>LIDARRange: 50m-50km </p><p>1-m resolution-</p><p>21INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Cubesat Network Architecture</p><p>22INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Cubesat ModificationsCubesat I &amp; Cubesat II</p><p> Visual spectrum camera on both CubeSats</p><p> UV-VIS spectrometer on CubeSat I</p><p> IR spectrometer on CubeSat II</p><p> S-band antenna and transponder for inter-CubeSat communication and data transmission to relay CubeSats</p><p>Cubesat III &amp; communication relay sat</p><p> X-ray spectrometer on CubeSat III</p><p> No science payload on communication relay sat</p><p> S-band antenna and transponder for inter CubeSat communication </p><p> X band antenna and transponder for communication with Earth</p><p>23INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>24INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>1. Collect a representative sample of spectral data from Phobos with 100 bands and 300m resolution</p><p>2. Image 1/3rd of Phobos surface at a minimum resolution of 1.8 m/ pixel</p><p>3. Observe the stability of the L1 Lagrange Point</p><p>Mission Objectives</p><p>25INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p> 6U CubeSat</p><p> Spectral and Visible Sensor Array</p><p> Deployable Solar Panels</p><p>oHawk MMG Gimballed Deployable</p><p> Deployable X-Band Antenna</p><p>o ISARA JPL </p><p> Dual Propulsion Systems</p><p>oAerojet Green Monopropellant</p><p>oBusek Electrospray</p><p>System Architecture</p><p>26</p><p>www.planetarysystemscorp.com/</p><p>http://www.mmadesignllc.com/</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>System Design</p><p>27INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p> Deploy from Launch Vehicle</p><p>o Systems check, telemetry check and initial burn</p><p> Cruise Phase (208 Days)</p><p>o Idle payload and propulsion with limited communication</p><p> Mars Capture (270 days)</p><p>o 22 min impulsive burn over 90 min to reduce 870 m/s</p><p>o Aero-braking for 135 days to steadily circularize orbit</p><p>o EP thrust for 135 days to reach Home orbit ~200km from Phobos</p><p>Concept of Operations</p><p>28INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>29</p><p>Mission Operations (547 days)</p><p> Weekly schedule allotting 4 hour window of DSN </p><p>communication per week</p><p> Depart Home orbit and approach Phobos to get data</p><p> Collect 5 visible and 5 spectral images within 15 km</p><p> Return to Home orbit and transmit data</p><p> Transmit 5 spectral and 5 thumbnails of visible </p><p>images</p><p> Select best 2 thumbnails and transmit cropped </p><p>lossless visible image data</p><p>Concept of Operations</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Budgets / Feasibility</p><p>Mass, Volume and Power Budget</p><p>SubsystemMass [kg] </p><p>(Max 14)</p><p>Volume [cc]</p><p>(Max 7000)</p><p>Power [W] </p><p>(Max Capture 44)</p><p>Chassis 1.000 7000</p><p>Power 2.110 700 0.7</p><p>Communication 2.440 508 12.9</p><p>ADCS 0.850 500 3.0</p><p>Propulsion 3.897 3080 15.0</p><p>Payload 0.586 591 2.65</p><p>Thermal 0.061 60 0.5</p><p>Total / Margin 10.944 / 21.8% 5439 / 32.0% 34.75 / 22.8%</p><p>30INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Programmatic Risks</p><p>Key Challenges</p><p> Test failures</p><p> Quality rejections</p><p> On time delivery</p><p> Cost variations</p><p> Supplier availability</p><p> Mission obsolescence</p><p>Risks and Challenges</p><p>31INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p> Unable to capture into Mars orbit</p><p>oDe-scope tertiary objective and accomplish both primary and secondary objectives with a fly-by</p><p> Unable to achieve mass/volume budget</p><p>o De-scope secondary objective and accomplish both primary and tertiary</p><p>o Remove Malin eCam-C50 from Payload</p><p>o Reduction in mass of 0.356 kg Improves Margin by 4%</p><p>o Reduction in volume of 411 cc Improves Margin by 5%</p><p>De-scope Considerations</p><p>32INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>33INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>Top Level Requirements </p><p> Compliance with NASA 6U CubeSat standards </p><p> Spectral data in range of 1000 nm to 2400 nm at 100m x 100 m spatial resolution </p><p> Capture 33.3% of Phobos surface at 1.8 m pixel resolution </p><p> Comply with the NASA General Environmental Verification Standard</p><p>34INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>35</p><p>Instrument Down Selection Approach </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p> Science Data Collection</p><p> Data transfer rate</p><p> DSN availability</p><p> Unexpected Communication black outs</p><p> Transit Time (7 months ) and time to achieve phobos orbit </p><p>(9 months)</p><p>36</p><p>Parameters Affecting Mission Duration</p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>37</p><p>Instrument Down Selection Approach </p><p>Communications</p><p>ScienceTime Best Case Nominal Case</p><p>Best</p><p>(Co-orbit @ 5 km)Data transfer 12 months 32 months</p><p>Mission time 28 months 48 months</p><p>Nominal </p><p>(Co-orbit @ 8 km)Data transfer 5 months 12 months </p><p>Mission time 21 months 28 months</p><p>Worst </p><p>(Fly By @ 14 km)Data transfer 1.5 months 3.6 months </p><p>Mission time 17.5 months 19.6 months</p><p>Mission time varies between 17.5 to 28 months based on above conditions </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>38</p><p>Risk Assessment</p><p> Vibrations EMI interferences Radiation Temperature Variations Space Debris Impact </p><p> Hardware failures such as bit error ,chip error </p><p> Software Malfunctions Outgassing of material Degradation of Material </p><p>Strength</p><p> Effect on the cube sat reliability</p><p> Inaccurate of science data</p><p> Reduction in Mission Life </p><p> Complete Mission Failure </p><p> Use of off the shelf components which have good space heritage </p><p> Redundant subsystems </p><p> Allocating task to alternative subsystem</p><p> Ground testing of software and hardware </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING Devils Cube</p></li><li><p>39</p><p>Risk Assessment - Design</p><p>Complete Mission </p><p>Failure </p><p>Crtical Reduction of </p><p>Misision Life leading </p><p>to reduction in the </p><p>performance of the </p><p>components </p><p>Reduction in </p><p>Accuracy of </p><p>science data </p><p>Effects the </p><p>performance of the </p><p>other subsystems </p><p>leading to mission </p><p>failure in the long </p><p>run </p><p>Frequent</p><p>(Highest Probability of </p><p>occurrence )</p><p>Radiation effecting </p><p>onboard Comps </p><p>Unexpected short </p><p>duration </p><p>communication losses</p><p>ModerateADCS pointing </p><p>inaccuracy due to </p><p>External EMI</p><p>Solar Panel Failure due </p><p>to external impact or </p><p>bending loads </p><p>Faulty orientation </p><p>of antenna </p><p>Antenna </p><p>Deployment/Solar </p><p>panel deployment </p><p>Failure due to gimbal </p><p>failure</p><p>Occasional Propulsion System </p><p>Ignition Failure </p><p>1.External EMI </p><p>interfernce with EPS </p><p>and Controllers </p><p>2. Active Thermal </p><p>system Malfunction </p><p>Components </p><p>Outgassing </p><p>leading camera </p><p>lens fogging </p><p>Reduction in bolted </p><p>joint pretension due </p><p>to Creep </p><p>Remote</p><p>Structural failures due </p><p>to Vibration 2. Impact </p><p>by Space Debris </p><p>Camera Startup </p><p>failure </p><p>Uneven thermal </p><p>Expansion of </p><p>structure</p><p>Severity of </p><p>Risk </p><p>Risk </p><p>Occurrence</p><p>Probability </p><p>INTERPLANETARY CUBESAT DESIGN </p><p>IRA FULTON SCHOOL OF ENGINEERING...</p></li></ul>